Building the defense of tomorow together

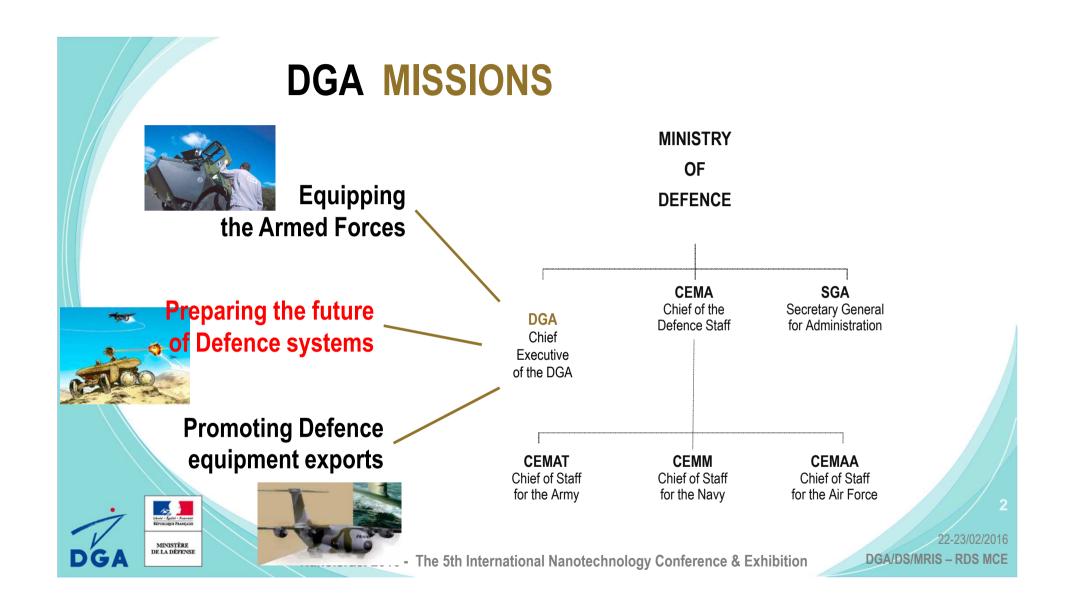
Opportunities in nanostructures and nanomaterials for Defense applications

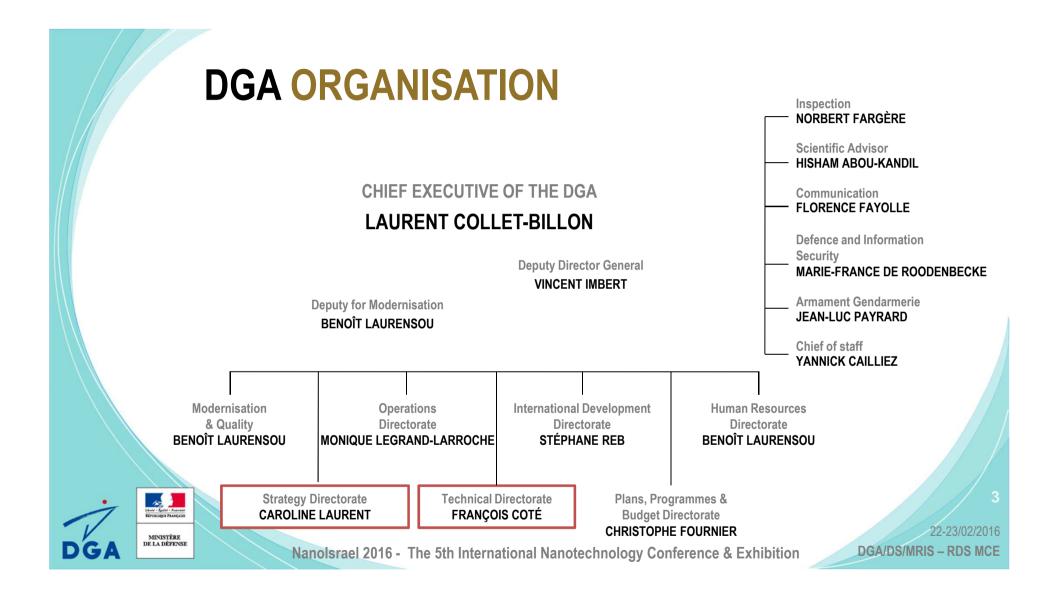
Bruno Mortaigne,

Head materials, chemistry, energy scientific domain

Presented by François Barthelemy,

Expert materials on balistic and protection


Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition


22-23/02/2016

DGA/DS/MRIS – RDS MCE

Liberté • Égalité • Fraternité RÉPUBLIQUE FRANCAISE

MINISTÈRE DE LA DÉFENSE

22-23/02/2016

Strategy directorate : Missions of MRIS*

- * Office for Advanced Research and Innovation
- > Explore New Scientific Ideas, identify future threats
- Identify and Orientate Research with Defense Interest ; detect emerging technologies
- Create and Monitor a Scientists and Engineers Community;
 - Manage a complete ecosystem

MINISTÈRE DE LA DÉFENSE

- a chain of stakeholders : research laboratories, academic and industrial partners
- a strategy : sciences & technologies for the Ministry of Defence
- tools and systems : from the laboratory to the demonstrator (ASTRID, RAPID, PHD, investment programs)
- Facilitate Transfer of Research Results; Promote Scientific Policy of DGA
- Share the Effort with Civil Research (Dual Use)

and with Foreign Countries (international)

22-23/02/2016 DGA/DS/MRIS – RDS MCE

Scientific domain : Materials. Chemistry & Energy

Materials

Materials for structures

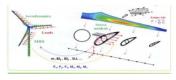
Thermal and mechanical sollicitations - Microstructures Composites – Superalloy - Ceramique

Fonctional materials

Multi functional surfaces, Electromagnetisme Nanomaterials, Metamaterials, Piezoelectric

Process, simulation - experimentation, bonding, NDC

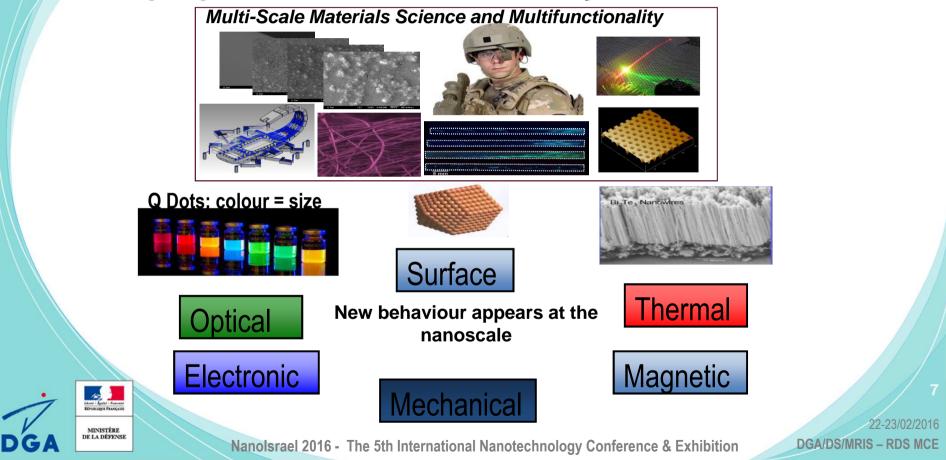
Surfaces Surface behaviour, interface Chemical and biochemical behaviour Catalysis


Chimistry

Detection - Decontamination Environment : Alternative products & concepts B & C detection and identification Energetic materials

Microstructure

MINISTÈRE DE LA DÉFENSE **Energy Material behaviour** Electrochemical behaviour Thermodynamical phenomena


New sources - Stockage Photovoltaïque, PAC

22-23/02/2016 DGA/DS/MRIS – RDS MCE

Interest in nanoscale : new properties; multi-functionality of materials

R & D : Operational aspects

Protection of combatants (infantry and platforms) 0

Optimize the compromise : Cost - Protection (efficiency) - Weight (mobility)

Platforms: vehicles / aircraft / ships Ο

- Lighweight structure (improve mobility / autonomy) Maintenance (involved cost)
- Ensure time life

MINISTÈRE DE LA DÉFENSI

- Protect surfaces (fight against corrosion) complying with environmental regulations Control the wear of rotating parts (tribology)
- Ensuring controllability of new structured
- Increase stealth to improve protection : materials signature Improve tolerance to battle damage and know-how in terms of repairs (on the theater of operations)

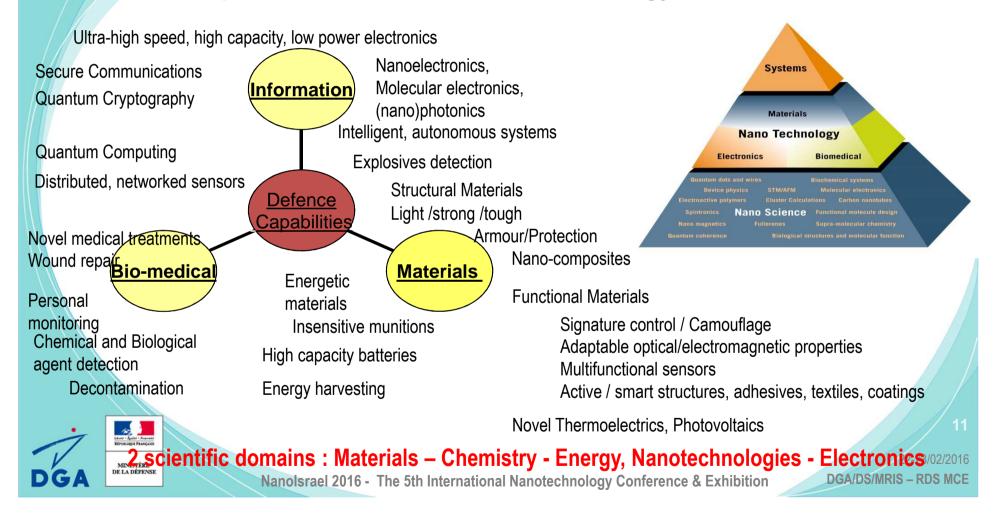
Ensure the independence and energy security (mobility) Ο

Energy Storage

Storage efficiency

Pyrotechnic safety, compliance with regulations: environmental, transportation, H & S etc.

Nanotechnologies domain : technical sub-themes Soldier Protection Communications CBRN threats Increase rate/reach Others threats : shots, detection... •Agility/stealth Smart textiles •Decrease the size • IFF Nanobiotechnologies Wireless communications Nanoelectronics Nanoelectronic Integration of Nano Devices Nanomaterials Integration of Nano Devices Threats detection : MEMS/NEMS Radar, electronic warfare **Guidance/Navigation** Nanoelectronics •Decrease the complexity of FE architectures Indoor localisation Integration of Nano Devices Increase frequencies up to the sub-mm •Decrease size, costs... •Drastic reduction of size, weight, costs... Improve performances (evolution to drones) Nanoelectronics ; Nanophotonics Nanomaterials ; •MEMS/NEMS Integration of Nano Devices MINISTÈRE DE LA DÉFENSE DGA/DS/MRIS - RDS MCE D C Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition

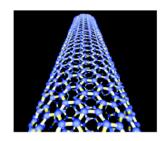

Materials, Chemistry, Energy --- Main Technological priorities

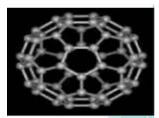
- Multifunctional materials: Structure / properties /processing /durability relationships
- Materials for lightening structures
- Advanced Concepts for armor and ammunition
 - > New projectiles (nanomaterials, metallic glasses, multi materials)
 - New protections (composites, transparents)
- Development processes (SPS, additive manufacturing, Thermal spraying, sol-gel deposition...)
- Surface treatments and catalytic processes
- Propellants and highly energetic materials
 - Securing ammunition and increased performance
- Renewable energy harvesting in non-cooperative environment
- Energy Storage : Electrochemical and thermochemical behaviour
- Supply chains availability : eco-design, sustainable alternative methods

Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition

22-23/02/2016 DGA/DS/MRIS – RDS MCE

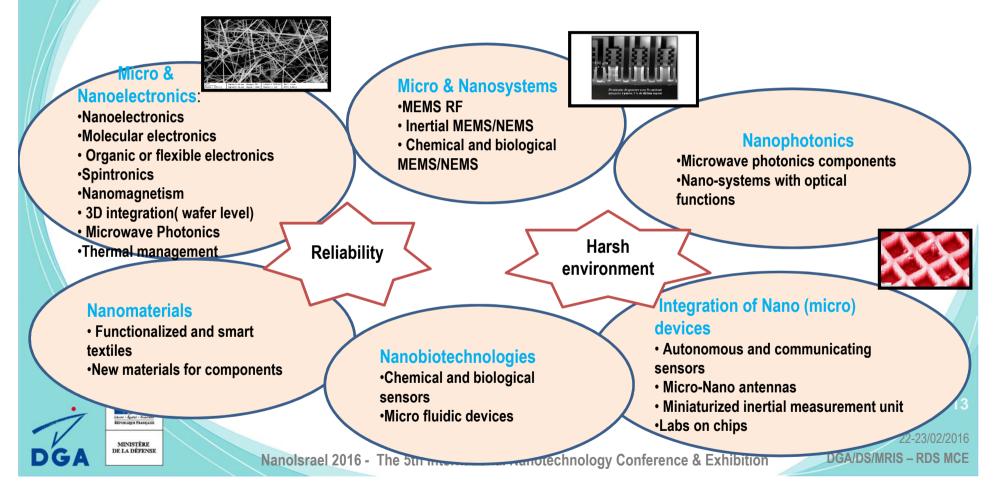
Impact of Nano- Science & Technology for Defence




Dual use 2016 research on Nanomaterials

- Material to improve capability to withstand corrosion
- Bioinspired structures (hydrophoby, surface aspects, reinforcement...)
- New processes : additive manufactoring, Spark Plasma Sintering (nanoscale control)
- Thermal and Electrical conduction
- Chemical synthesis with catalysis Military applications
- Nanomaterials, metallic glasses for armor or war heads
- CNT Reinforce to enhance structural performances
- High temperature materials (MMC or CMC) for aircraft engine; Self-repairing materials
- Functional materials based on pigments, nanoporous materials for reduced SER or SIR
- Nano structural Surface for corrosion control, hydrophobia, high performance antireflexion coating
- Lab on chip for biological trace detection
- Nanomaterials for catalytic decontamination Energetic Applications
- Nano architectural Catalysts for Fuel Cells
- Ano composites for Hydrogen Storage
- MINISTERE Nano charges for pyrotechnic components

Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition



Scope of Nanotechnologies domain : scientific sub themes

Focus on main technological priorities for electronic

New technologies for soldier's equipment: 0

- > Devices for detection and identification of CBR-E threats, fast and reliable preparation of complex samples;
- > innovative technology for in-field fast sequencing
- > Very low light level CMOS imagers. Embedded intelligence closer to pixel
- > Smart and functionalized textiles: protection, filtering, self decontamination, camouflage, integration of antennas and sensors...

New components for microwave chains and communications: 0

- > Miniaturized components, high flexibility, down to sub millimeter wavelength; innovative microwave photonic components
- > RF MEMS and associated packaging .Superconductivity.
- > 3D printing and related specific materials

New components for inertial systems: Ó

> New materials, innovative design. Medium or higher class performance

Integration of Nano devices: 0

MINISTÈRE DE LA DÉFENSI

- > Autonomous sensors with wireless communications, nanodrones
- Micro/nano-antennas reconfigurable in frequency and directivity
- Ultra-miniaturized inertial measurement unit.

Flexible Display

DGA/DS/MRIS - RDS MCE

Some exemples on nanomaterial developments

- Manufactoring : Additive technologies, SPS, microwaves, sol gel deposition
- Biomimetisme : mechanical properties, microstructure, surface aspect
- Stealth, antennas : metamaterials
- Chemistry detectors
- Energy : new sources
- Soldier protection

MINISTÈRE DE LA DÉFENS

Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition

22-23/02/2016 DGA/DS/MRIS – RDS MCE

Manufacturing :

High temperature materials : ceramics and metals Organic materials – blocks copolymers

Additive manufacturing :

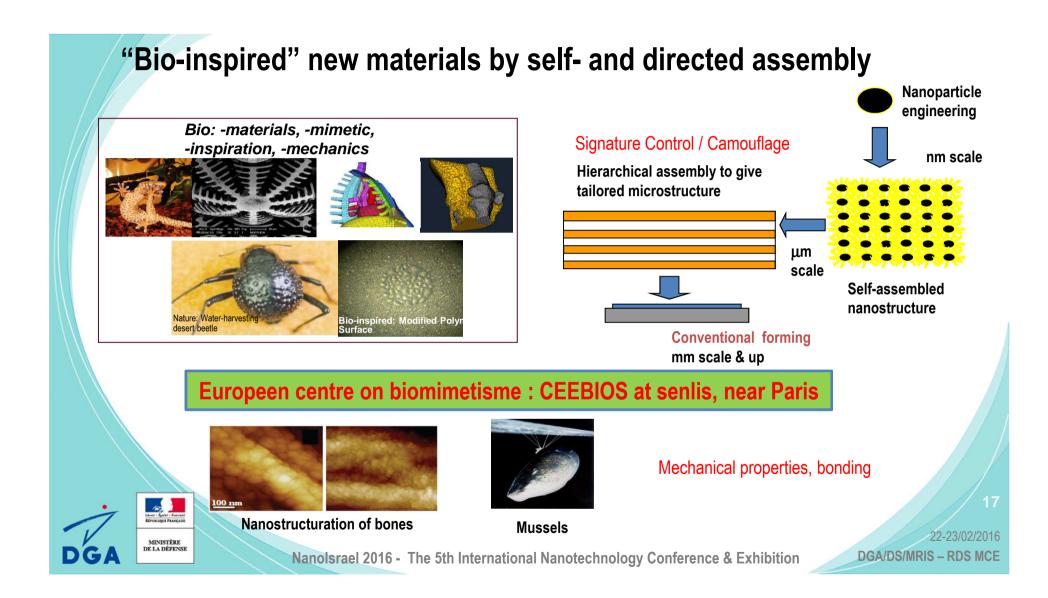
- Architectured structures cooled by transpiration
- Powder projection : macrostructure at 2 scales (micro and nanometrique)

Combustion chamber made in one piece by SLM : dilution holes and multi-perforation . Inconel 718 metal (EADS IW)

columnar thermal barrier deposited on moving turbine blade

Microwave process

12


MINISTÈRE DE LA DÉFENSE

- Powders melting
- Solidification of sol gel deposition controlled solvent evaporation
 - The coupling of microwave heating with the sol-gel process strongly influences the solid formation process, allowing control of particle size, size distribution and their crystal structure.

NANOTM : Application of nanomaterials for warheads

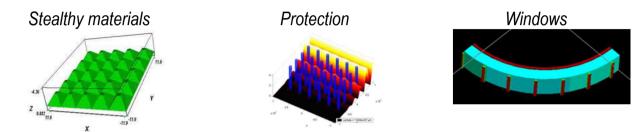
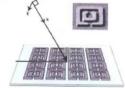

« Spark Plasma Sintering – SPS » process technology

 Image: Constraint of the second se

Metamaterials

Metamaterials or forbidden band gap Materials to have singular effects applied to optical and EM properties control



Improving the antennas and develop new stealth concepts - masking: control the optical or electromagnetic coupling

EHRHARDT Kévin (Bordeaux) : Measurement and modeling of effective properties of meta self-assembled materials formed of resonant metal nanoparticles

MIMICRA : Metamaterial Inspired Microwave Conformal Radar Antennas (MIMiCRA 2)

Increase the capacity and potential of radar detection of aeronautical platforms by using new metamaterials to manufacture antennas.

n

Soldier protection

- Nanocrystalline ceramics
- Hierarchical nanocomposites
- Nanocrystalline metals
- Novel fibres
- Shear thickening fluids
- Novel dielectrics

Sensing

MINISTÈRE DE LA DÉFENSE

Equipment for effective deployment, protection and survivability

- Power provision and management
- Reduce heat burden
- Body armour, CBRN Protection
- Network communications
- Camouflage, Signature control
- Biological protection

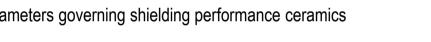
19

DGA/DS/MRIS – RDS MCE

Structural material : balistic protection and kinetic warheads

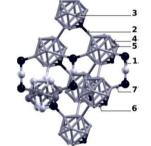
PhD thesis

- Aharonian Charles (CIFRE Limoges):
 - Development of ceramic matrices composite and / or layered architectures for ballistic protection of persons

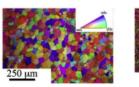

Jay Antoine :

Theoretical study of the effect of defects on the physical properties of ceramics

Zinszner Jean Luc :


MINISTÈRE DE LA DÉFENSE

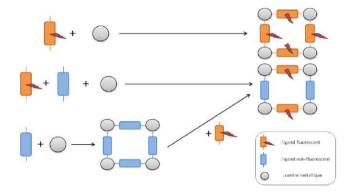
Identification of material parameters governing shielding performance ceramics



- **MAUDE** : metallic materials with Ultra-thin grains produced by dynamic plastic deformation
 - Scale-up, mechanical properties and deformation mechanisms)
- **CERAMBALL** : Light weight ceramics for ballistic protection
- FLECHE :

- New materials for High Performance kinetic energy penetrator (OFL)
- Study of nano-powders and metallic glasses solutions

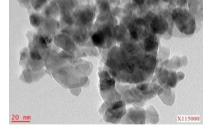
Structure of B₄C


Filtering size of polycrystalline Zn grains after impact in fast dynamics sollicitation

DGA/DS/MRIS - RDS MCE

Chemistry : detection systems - decontamination

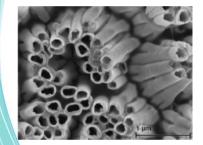
B &C sensors: alerte and identification


 PhD thesis Paul Rouschmeyer (Univ. Versailles) : hybrid porous solids photoactive

Schematic diagram of the two MOF synthesis routes mixed ligands

Decontamination, **Protection**

PhD thesis Armelle Perard (univ. Strasbourg) : Decontamination and remediation Photocatalytic. Production of a device for eliminating toxic chemicals and pollutants in air and water


TiO2 : sol gel synthesis with calcinetion at 500°C and directly doped with Sn4+

21

DGA/DS/MRIS – RDS MCE

Energy – material behavior and new sources

Pt nanotubes

100

MINISTÈRE DE LA DÉFENSE

- Noémie ELGRISHI :
 - Towards a photoelectrochemical cell for the reduction of fuel into carbon dioxide

• Mathieu LEPESANT :

- Study and implementation of multi-metallic catalysts for nano-organized PEM fuel cell
- Léonnard THOMMY :
 - Development of new electrode for high temperature electrochemical converters materials: fuel cells and electrolysers

Conclusions

Nanomaterials will lead to new capabilities for defence and security technology applications

A lot of applications :

- Protective Systems
- Communications (covert, secure) and information processing
- Camouflage, 'stealth', mimicry / disguise
- Sensors and surveillance systems
- Power provision and usage

Importance

MINISTÈRE DE LA DÉFENSE

- to develop a knowledge on materials « structure- process properties » relationships including modelisation at different scales (micro – meso – macro)
- o to optimize and control the nanostructure

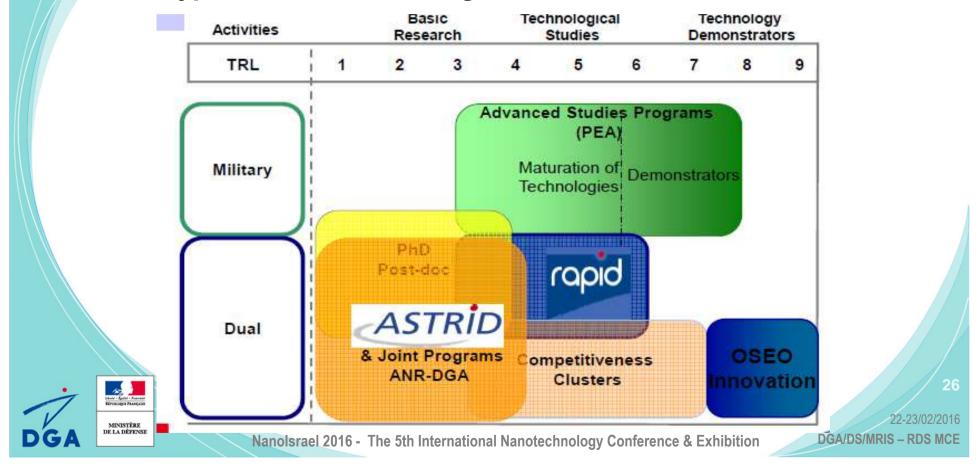
Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition

20

Thank you for your attention !

For further contact :

bruno.mortaigne@ intradef.gouv.fr francois.barthelemy@intradef.gouv.fr


23/02/2014

Nanolsrael 2016 - The 5th International Nanotechnology Conference & Exhibition

GLOBAL ANALYSIS, ON THE BASIS OF REFERENCE DOCUMENTS

Type of research funding tools for defense

